Allium Thiosulfimates: Chemistry, Biological Properties and their Potential Utilization in Food Preservation

Noureddine Benkeblia¹,²* · Virginia Lanzotti³

¹ Department of Food and Nutrition Sciences, Graduate School of Dairy Science Research, Rakuno Gakuen University, Ebetsu, Hokkaido, 060-8501, Japan
² Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
³ Department of STAAM, University of Molise, 86100 Campobasso, Italy

Corresponding author: * ben-nour@rakuno.ac.jp, benkeblia@hotmail.com

ABSTRACT

Onion (*Allium cepa* L.), garlic (*Allium sativum* L.) and other edible *Allium* are among the oldest cultivated plants, and are used for multiple purposes. They are a rich source of several phytonutrients, and recognized to have significant and wide biological activities. These biological activities are related to the thiosulfimates, volatile sulfur compounds which are responsible for the pungency of these vegetables. The thiosulfimates or alkane(ene) thial-S-oxide are formed by the action of the enzyme alliinase (E.C. 4.4.1.4) from their respective S-alk(en)yl cysteine sulfoxides. However, depending on the *Allium* species, and under differing conditions, thiosulfimates can decompose to form additional sulfur constituents, including diallyl, methyl allyl, and diethyl mono-, di-, tri-, tetra-, penta-, and hexasulfides, vinyldithiins, and (*E*)- and (*Z*)-ajoene. With increasing interest into the utilization of natural biologically active compounds and the development of specific packaging, mainly active packaging, the thiosulfimates aroused much interest for the improvement of shelf-life and safety of perishable foods, and their potency as food preservatives and substitutes for chemicals. This review examines the nature and the biological activities of *Allium* thiosulfimates and their potential values as food preservatives in food preservation and shelf-life extension.

Keywords: antimicrobial, antioxidant, biosynthesis, chemistry, food preservation

Abbreviations: BHT, butylated hydroxytoluene; BHA, butylated hydroxyanisole; DPPH, 1,1-diphenyl-2-picrylhydrazyl

CONTENTS

INTRODUCTION ... 193
CHEMICAL STRUCTURE AND BIOSYNTHESIS OF THIOSULFINATES ... 194
CHEMICAL STRUCTURE OF OTHER ORGANOSULFUR COMPOUNDS ... 195
ANTIBACTERIAL PROPERTIES ... 197
ANTIFUNGAL PROPERTIES .. 198
ANTIOXIDANT PROPERTIES ... 199
CONCLUDING REMARKS .. 199
REFERENCES ... 199

INTRODUCTION

Allium species are supposed to be ones of the world’s oldest cultivated vegetables and they have been large reported. It is presumed that our predecessors discovered and consumed wild *Allium* species long before farming or writing was invented. Because *Allium* plants are small and leave no archaeological evidence, the exact origin remains still mysterious. Onion and garlic could probably be the first cultivated crops due to their growing versatility, long storage time, and portability. They could be dried and preserved for times when food was scarce.

At the present time, the *Allium* family has over 600 members, distributed all over Europe, North America, Northern Africa and Asia, each differing in taste, form and color, but close in biochemical, phytochemical and nutraceutical content. The plants can be used as ornamentals, vegetables, spices, or as medicine. There are over 120 different documented uses of the *Allium* plants, and besides their remarkable medicinal powers, *Allium* plants are generally consumed for their flavors, while their nutritive values have been appreciated only recently (Fenwick and Hanley 1999; Garlic & Health Group 2007).

Allium species, especially *Allium* vegetables, are characterized by their rich content of thiosulfimates and other organosulfur compounds, such as the well known lachrimatory factor. The thiosulfimates or alkane(ene) thial-S-oxide are formed by the action of the enzyme alliinase (E.C. 4.4.1.4) from their respective S-alk(en)yl cysteine sulfoxides which are the main responsible of onion flavor and produce the eye-irritating compounds that induce lachrimation. However, depending on the *Allium* species, and under differing conditions, thiosulfimates can decompose to form additional sulfur constituents, including diallyl, methyl allyl, and diethyl mono-, di-, tri-, tetra-, penta-, and hexasulfides, vinyldithiins, and (*E*)- and (*Z*)-ajoene.

With the increasing interest into the utilization of natural biological active compounds and the development of specific packaging, mainly active packaging, the thiosulfimates arouse much interest for the improvement the shelf-life and safety of perishable foods, and their potency as food preservatives and substitutes for chemicals. This review examines the nature and the biological activities of *Allium* thiosulfimates and their potential value as preservatives in food preservation and shelf-life extension.

Received: 9 June, 2007. Accepted: 20 August, 2007.
CHEMICAL STRUCTURE AND BIOSYNTHESIS OF THIOSULFINATES

Thiosulfinates are the best studied compounds arising from Allium species. Their finding was first reported by Wertheim (1844) and later by Semmler (1892) who identified the correct disulfide structure as the main component of distilled oil of garlic and onion. Fifty years late, it became clear that these compounds are not present in the intact bulbs but are formed by enzymatic reaction of precursor (Cavallito et al. 1944a; Cavallito et al. 1944b; Stoll and Seebeck 1948). In fact, they demonstrated that disulfides are absent when the bulbs are frozen in dry ice, pulverized, and extracted with acetone. The white powder obtained by this procedure does not show the classic pungent smell while it appears only after addition of water. On the contrary, when the powder is treated with hydro alcoholic solution the enzyme is inactivated and the disulfide compound is not found. So it was also clear that the pungency of garlic Allium plants is associated with the thiosulfinate compounds. Fig. 1 shows the proposed biosynthesis of such compounds starting from their precursor, non protein sulfur amino acids, S-alk(en)yl-L-cysteine-S-oxide (1a–1d; Fig. 1). They are all present is all Allium spp. analyzed so far constituting from 1 to 5% of the dry weight of the plant. As shown in Fig. 1, two molecules of precursor are needed to form the volatile thiosulfinates. Four sulfoxides are commonly present in Allium plants: S-2-propenyl- (1a), S-(E)-1-propenyl- (1b), S-methyl- (1c), S-propyl-L-cysteine-S-oxide (1d) and their homo and hetero coupling give rise to a number of resulting thiosulfinates (Rose et al. 2005). Due to the fact that most species also contain the S-ethyl- and S-butyl-L-cysteine-S-oxide (Krest et al. 2000), the number of resulting thiosulfinates is even higher. The cysteine sulfoxide precursors (1a–1d; Fig. 1), located in the cytoplasm, through an enzymatic reaction catalyzed by alliinase, a C-S lyase present in the vacuoles (Lancaster and Collin 1981), initially give sulfenic acid intermediates (2a–2d; Fig. 1). These highly reactive compounds immediately produce thiosulfinates by a condensation reaction (3a–3q; Fig. 1). Compounds possessing a 1-propenyl residue at the thiolic site exist as a mixture of the E, Z isomers (3e–3f, 3g–3h, 3i–3m) because of a sigmatropic [2,3] rearrangement. It has been found that garlic contain compounds 1a-1c, allii (1a) being the major compound. This last compound is the precursor of allicin (3a) (Cavallito et al. 1944a). In contrast, in

Fig. 1 Proposed biosynthetic pathway of thiosulfinates starting from their precursor, non protein sulfur amino acids, S-alk(en)yl-L-cysteine-S-oxide.
onion 1a is the only compound absent while 1b, the compound with the 1-propenyl residue, named dialliin, is the major metabolite (Virtanen 1965; Lawson et al. 1991a).

Also present in Allium are γ-glutamyl peptides of sulfur amino acids that are the biosynthetic precursor of organic sulfur compounds. Fig. 2 shows the proposed biosynthetic pathway of isoalliin (1b) from cysteine, the amino acid precursor. The sulfate after reduction is incorporated into cysteine in the chloroplast (Rennenberg 1982) and then is converted into γ-glutamylcysteine (Anderson 1980). Michael addition of this last compound with methacrylic acid, originating from valine, affords γ-glutamyl-S-2-carboxypropylcysteine (4, Fig. 2) which in onion undergoes sequential decarbonylation, oxidation, and cleavage by glutamyltranspeptidase [EC 2.3.2.1] to 1b. By boiling the bulbs with a hydro alcoholic solution the allinase enzyme is inactivated thus allowing the analysis of peptide precursors (Ziegler and Sticher 1989; Mutsch-Eckner et al. 1992).

The total thiosulfates of different Allium spp. have been quantified (Block et al. 1992b) by HPLC analysis. Garlic (A. sativum) showed higher amount of total thiosulfates compared to the other spp. analyzed. Lower content (15 µmol/g wet fresh weight average concentration) has been found in garlic grown in colder climate (21°C average temperature), while concentration increases (23 µmol/g average concentration) for store-purchased garlic (25°C average temperature). Highest thiosulfinate amount (36 µmol/g) was found in garlic grown in a warmer climate (31°C average temperature). All the other species analyzed possessed thiosulfinate contents ranging from 21 µmol/g (wild garlic, A. ursinum) to 53 µmol/g (elephant garlic, A. ampeloprasum) to 0.25 µmol/g (shallot, A. ascalonicum) to 0.19 µmol/g (chive, A. schoenoprasum) to 0.15 µmol/g (leek, A. porrum) to 0.08 (scallion, A. fistulosum).

It has been found (Lawson et al. 1991a) that the concentration of γ-glutamyl-S-(E)-1-propenylcysteine (1b) and γ-glutamyl-S-2-propenylcysteine (1a), the major metabolites of fresh garlic extract, decreased markedly with storage at temperature above 0°C. When the storage temperature is colder, the concentration of 1b increases and therefore those of the related thiosulfates. Thus, climate has been demonstrated to affect not only the total content of thiosulfates but also their relative amounts. In fact, in garlic grown in colder climate (21°C average temperature) the ratio 3a/1 methyl thiosulfinate is higher than garlic grown in temperate climates 10°C warmer (Block 1992). It was suggested that Allium spp., particularly garlic (A. sativum) but also elephant garlic (A. ampeloprasum) grown in colder climates are subjected to stress and that this stress manifest itself in reduced synthesis of S-methyl-L-cysteine sulfoxide, the immediate precursor of methyl thiosulfates. Storage at temperature above 0°C can also result in diminished formation of methyl thiosulfates, possibly by selective destruction of a methyl-specific alliinase (Lawson and Hughes 1992).

The composition of thiosulfinates depends also on the Allium spp., and this variation has been used in chemotaxonomic studies. In particular, only Chinese chive (A. tuberosum) showed a preponderance of methyl groups, although all Allium plants examined contain methyl groups (Iida et al. 1983). Garlic (A. sativum), elephant garlic (A. ampeloprasum), and wild garlic (A. ursinum) show a preponderance of the allyl group that is also present in detectable amounts in Chinese chive. The allyl/methyl ratio ranged from 94:2 (garlic grown at 22-23°C) to 80:16 (store bought garlic) to 74:24 (garlic grown at 32°C) to 62:35 (elephant garlic) to 50:49 (wild garlic) to 11:86 (Chinese chive). Allyl groups are absent in onion (A. cepa) and shallot (A. fistulosum), shallot (A. ascalonicum), leek (A. porrum), and chive (A. schoenoprasum). In these last species the propyl group is a major alkyl group with methyl/propyl ratio varying from 1:5.8 (chive), to 1:1.52 (in scallion, shallot, and leek. In onion the methyl/propyl ratio varies from 1.7–1.5 (yellow and red) to 1:1 (white). Thus, the propyl group is absent in garlic, elephant garlic, wild garlic, and Chinese chive, while it is present in onion taxa. Finally, the 1-propenyl group is present in all species, but is dominant only in onion.

CHEMICAL STRUCTURE OF OTHER ORGANOSULFUR COMPOUNDS

The main fate of the sulfenic acid intermediate is condensation to produce thiosulfates, however these compounds can participate in a variety of reactions (dehydration, rearrangement, condensation, Diels-Alder reaction, hydrolysis, pyrolysis) depending on the conditions (Lanzotti 2006) which afford other classes of organosulfur compounds (Figs. 3, 4). The last compounds can be classified as headspace volatiles (formed when bulbs are cut or homogenized at room temperature) (5–7a/b; Fig. 3), compounds formed when thiosulfates stand in solution at room temperature.

Fig. 3 Other headspace volatiles in onion formed when bulbs are cut or homogenized at room temperature.
(8a/8b–12, Fig. 4) and compounds formed from thiosulfinitates when the temperature is increased from room temperature up to 100°C (13, 14, Fig. 4) (Block 1993).

The main headspace volatiles (Fig. 3) formed in onion bulbs from sulfinic 1-propenyl acid intermediate (2b) by internal transfer of hydrogen are (Z,Z)-propanethial S-oxide, named lachrymatory factor (LF) (5, Z-isomer) (Block 1992; Breu 1996). Their names derive from “cry” because they are the compounds that make people cry when they slice an onion. Other onion volatiles are cepaenas (e.g. 6) (Block 1992; Breu 1996), whose name derives from cepa, and 2,3-dimethyl-5,6-dithiabicyclo[2.1.1]hexane 5-oxides, named cis and trans-zwiebelane (7a and 7b, respectively) (Bayer et al. 1989), from “zwiebel”, onion in German.

From thiosulfinate solution at room temperature could originate (Fig. 4) thiosulfinitates (e.g. 8a and 8b), di- and trisulfur compounds (e.g. 9a–9f), 2-vinyl-2,4-dihydro-1,3-dithiin (10), 3-vinyl-3,4-dihydro-1,2-dithiin (11), and ajoene (12, from the Spanish word “ajo” that means garlic). At higher temperatures (about 100°C), polysulfur compounds (Fig. 4) are formed (e.g. 13 and 14) containing up to 5 sulfur atoms.

Kubec et al. (2004) studied the precursors involved in the formation of pink and green-blue pigments generated during onion and garlic processing. It has been confirmed that the pigment formations are similar, with (E)-S-(1-propenyl) cysteine sulfoxide (1b, Fig. 1), isoaillin, serves as the primary precursor. Upon disruption of the tissue, isoaillin and other S-alk(en)ylcysteine sulf oxides are enzymatically cleaved, yielding 1-propenyl-containing thiosulfinitates (3j, 3b, 3o, with a Me, allyl or propyl group at the thiolic side, respectively). A thiosulfinate possessing 1-propenyl residues on both sides (3k; Fig. 1) of the molecule has also been found. These compounds have been shown to subsequently react with amino acids to produce the pigments. Whereas the Pr, 1-propenyl, and Me derivatives (3o, 3k, and 3j, respectively) form pink, pink-red, and magenta compounds, those containing the allyl group (3b, Fig. 1) give rise to blue products after reacting with glycine at acidic condition (pH 5.0). This reaction does not take place in the cells where the cellular pH is basic.

Very recently, the abilities of all 20 protein amino acids and six naturally occurring 1-propenyl-containing thiosulfinitates to form these pigments have been studied. Furthermore, several analogs of these thiosulfinitates were synthetically prepared, and their color-forming abilities were evaluated, together with those of various amino compounds by reaction with glycine. It has been found that an unsubstituted primary amino group and a free carboxyl group are essential structural features required for amino compounds to be able to generate the pigments. Out of the thiosulfinate analogs tested, only those containing at least a three-carbon chain with the β-carbon bearing a hydrogen atom yielded the pigments. Thiosulfinitates, sulfoxides, sulfides, and disulfides did not form any colored products. The pH optimum for pigment formation has been found to be between 5.0 and 6.0 for all thiosulfinitates tested (Kubec et al. 2007).

The variation in thiosulfinitates and related compounds between fresh bulbs and cloves, and commercial garlic products was investigated (Lawson et al. 1991b). The analysis indicated that thiosulfinitates were released only from garlic cloves and garlic powder products. The vinylid thioethins (10, 11; Fig. 4) and ajoene (12; Fig. 4) were found only in products containing garlic macerated in vegetable oil. The disulfide compounds containing two allyl (9a; Fig. 4), or methyl allyl (9c; Fig. 4), or two methyl (9d; Fig. 4) residues were found only in products containing the oil of steam-distilled garlic. Typical steam-distilled garlic oil products contained about the same amount of total sulfur compounds as the total thiosulfinitates released from freshly homogenized garlic cloves. However, oil-macerated products contained only 20% of that amount, while for garlic powder products the amount varied from 0 to 100%. Products containing garlic powder suspended in a gel or garlic aged in aqueous alcohol did not contain detectable amounts of these non-ion sulfur compounds. A comparison of several brands of each type of garlic product revealed a large range in content (4-fold for oil-mac erates and 33-fold for steam-distilled garlic oils), indicating the importance of analysis before using garlic products for clinical investigations or commercial distribution (Lawson 1996).

Mondy et al. (2002) analyzed the organosulphur com-
pounds of fresh onion and transformation products, such as frozen, freeze-dried powders and sterilized products. In particular, LF (5; Fig. 3) was directly analysed on fresh onion juice which showed to contain thiosulfinates and zwiebelanes (7a and 7b; Fig. 3) also after 80 minutes maceration. With the exception of LF, frozen onion compounds were similar to those of fresh onion sample. Conversely, transformed samples (9a; Fig. 4), which were lost most purely, showed initially formed compounds and produced mainly di- and trisulfides (e.g. 9−12; Fig. 4) corresponding to the degradation of thiosulfinates and zwiebelanes. These dramatic changes explained the very different flavours of these manufactured products compared to fresh material.

Randle (1997) reviewed the literature about the onion flavour chemistry and reported as main components LF (5; Fig. 3) and various thiosulfinates (3g−3q; Fig. 1) which are also responsible for the characteristic onion flavours. As shown in Fig. 2, sulfate through cysteine can proceed through several peptide pathways and terminate in the synthesis of one of three flavour precursors. Flavour intensity is governed by genetic factors within the onion and environmental conditions under which the onions grow (Randle et al. 1994). Onion cultivars differ in the ability to absorb sulfate and in the efficiency of synthesising flavour precursors. Increased sulfate fertility, higher growing temperatures and dry growing conditions all contribute to increased flavour intensity in onion (Randle et al. 1994).

The thiosulfinates are best analyzed by milder chromatographic methods than gas chromatography and mass spectrometry (GC−MS), usually used for stable volatile compounds. Then, HPLC and supercritical fluid chromatography (SC−MS) have been shown to yield the best analytical results (Lanzotti 2006).

Block and his group published several papers on this matter. They first performed a quantitative GC−MS analysis (Block et al. 1992a) of thiosulfinates and related compounds from onion and other common related Allium species, such as leek (A. porrum), scallion (A. fistulosum), shallot (A. ascalonicum), and chive (A. schoenoprasum). A wide-bore capillary column was used with cryogenic (0°C) on-column injection and initial column temperature conditions, slow column heating rates (2−5°C/min), and GC−MS transfer line temperature of 80−100°C. Authentic samples of suspected compounds were used to verify identities and quantify the compounds, using benzyl alcohol as internal standard. Under these conditions, the thiosulfinates 3g−3j, 3l−3n, 3p, 3q (Fig. 1), and cis- and trans-zwiebelanes (7a and 7b; Fig. 3, respectively) were all identified in onion and in leek, scallion, shallot, and chive. No satisfactory peaks were obtained for (E)-isomer (7c; Fig. 1), or for thiosulfinates containing a 2-propenyl (allyl) group (3a−3f; Fig. 1), which were best identified by HPLC.

The data regarding quantitative HPLC analysis were reported in an accompanying paper (Block et al. 1992b) in which room-temperature vacuum distillates and extracts of onion, garlic, and other related Allium species such as leek, scallion, shallot, chive, wild garlic, and elephant garlic were analysed by HPLC. In most cases, using authentic samples of suspected thiosulfinate components to evaluate the methods. It was concluded that GC, as typically performed with high injector and column temperatures, creates a wrong picture of the volatile extracts of Allium species, and that HPLC provides instead a reliable measure, both qualitative and quantitative of the compounds present.

A year later, Sinha et al. (1992) published a method based on the supercritical carbon dioxide extraction (SC−CO2) of onions and their quantitative analysis by GC−MS. This analysis evidenced the presence of 28 sulfur compounds, including allin (3a; Fig. 1) (or its isomer, di-1-propanyl thiosulfinate, 3k; Fig. 1), Pr methanethiosulfonate (8b; Fig. 4), dithio derivatives (10−12; Fig. 4), diallyl sulfide (9a; Fig. 4), and diallyl trisulfide (9b; Fig. 4). A common steam-distilled onion oil, analysed under similar conditions, did not contain detectable amounts of these listed compounds while other compounds were in common with the SC−CO2 onion extract. The compounds Me Pr trisulfide (9e; Fig. 4), di-Pr trisulfide (9f; Fig. 4), and di-Pr tetrasulfide were detected only in the commonly steam-distilled onion oil and were present in high concentration.

Finally, Cruz-Villallon (2001) developed a method to synthesize allin (3a; Fig. 1), based on the oxidation of diallyltrisulfide (9a; Fig. 4) with lost manganesium monoperoxyphthalate (MMPO) and tetrabutylammonium hydrogen sulfate, as a phase transfer catalyst. The allin obtained was isolated by solid-phase extraction and its concentration was detected spectrophotometrically, allowing the allin solution to be used also as a standard for HPLC calibration.

ANTIBACTERIAL PROPERTIES

While investigating plant extracts for antibacterial activity, it was observed that a freshly prepared infusion of ground garlic cloves possessed high antibacterial activity. A literature investigation showed that A. sativum, the common garlic, has been endowed with therapeutic virtues both in legend and in the scientific literature, and most of the claims have been poorly substantiated, until recently (Garlic & Ginger Group 2001). Several investigators have observed antibacterial activity of garlic extracts and have attributed this activity to diallyl sulfide, unstable sulfur in alkyl polysulfides, a bacteriophage, acrolein or some similar unsaturated aldehyde, and recently to a chemically undefined group of substances designated as phytocinones, however, the antibacterial principle of A. sativum, allin, was first isolated, characterized, and its physical properties and antibacterial action assessed by Cavallito and Bailey (1944) and Cavallito et al. (1944b). Later, Feldberg et al. (1988) reported an in vitro mechanism of inhibition of bacterial cell growth by allin. They noted that allin delayed and inhibited partially DNA and protein syntheses, while inhibition of RNA synthesis was immediate and total, suggesting that this is the primary target of allin action.

The antibacterial and antifungal activities against a variety of Gram-negative and Gram-positive bacteria were, and continue to be extensively investigated (Whitemore and Naidu 2000). Han et al. (1995) reported that the antibiotic activity of 1 mg of allin has been equated to that of 15 IU of penicillin. Recent investigations have also demonstrated an inhibitory effect by aqueous extracts on numerous bacterial species such as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Flavobacterium sp., Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, and Vibrio parahemolyticus (Sivam et al. 1997; Hsieh et al. 2001; Ward et al. 2002; Benkeblia 2004), and fungi such as Aspergillus flavus and Aspergillus niger (Phay et al. 1999; Hsieh et al. 2001; Benkeblia 2004). However, these authors reported different minimum level of inhibition depending on the extraction method, the final content of thiosulfinates in the extracts and also the applied method for the assessment of the inhibitory effect.

Garlic extract is rich in H and H+ ions and has variable antibacterial activity against many bacteria species including Bacillus subtilis, Salmonella, and E. coli (Cavallito and Bailey 1944; Yoshida et al. 1998; Yin and Cheng 2003; Benkeblia 2004) (Table 1). From a fundamental point of view, the antibacterial activity of Allium thiosulfinate-extracts has been extensively investigated, however, these investigations focused mainly on onion and garlic. However, onion is not as potent as garlic since the sulfur compounds in onion are only about one-quarter the level found in garlic. Allin and allyl-methyl plus methylally thiosulfinate extracted from garlic have shown inhibition of the in vitro growth of Helicobacter pylori (Hp). The capacity and effectiveness of isolated natural thiosulfinates have been tested, and this has enabled the identification of the main compounds responsible for the bacteriostatic activity. Additionally, microbiological analyses have also shown that these compounds have a synergic effect on the inhibition of the in vitro growth of Hp (Cáñizares et al.
0.2 for all strains tested at a concentration of 6.5 mg/ml (Gnan and Demello 1999). Furthermore, three thiosulfonates were isolated from oil-macerated garlic extract by Yoshida et al. (1998), and their antimicrobial activities against Gram-positive and Gram-negative bacteria were compared with allicin. The results have shown that antimicrobial activity of two isolated thiosulfonates were comparable but lower than that of allicin. They suggested that the antimicrobial activity were affected by alk-(en)-yl groups, and the order for antimicrobial activity was: allyl ≥ methyl > propenyl.

Among these numerous and abundant naturally occurring compounds, Allium extract has been considered a natural preservative or food additive, and can be used as additional methods of controlling pathogens (Whitemore and Naidu 2000). Yin and Cheng (2003) reported the antimicrobial activity of four different thiosulfonates in ground beef. The presence of two thiosulfonates significantly reduced total aerobes and inhibited the growth of the inoculated pathogenic bacteria, Salmonellla typhimurium, Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Campylobacter jejuni. Wong and Kitts (2002) also reported a further reduction in psychrotrophic bacteria was observed with the pre-seasoning of garlic, in both non-irradiated and irradiated steaks. On the other hand, the initial aerobic flora was significantly reduced by a different form of added fresh and powder of garlic, and the shelf-life of dry chicken sausage was significantly extended to 21 days (Sallam et al. 2004).

ANTIFUNGAL PROPERTIES

Comparatively to the extensive literature on the effect of Allium extracts on bacteria, little has been done on their effect on fungi. The first investigation was reported by Raghunandana et al. (1946). Later, Yamada and Azuma (1977) reported that allicin was effective in vitro against Candida, Cryptococcus, Trichophyton, Epidermophyton, and Microsporum, however, decreased activity was demonstrated against Aspergillus. Nevertheless, these authors noted that the minimum inhibitory concentration (MIC) of allicin was considerably affected by incubation time, inoculum size, type of medium, and medium pH. For example, the MIC (minimum inhibitory concentration) of allicin against Candida, Cryptococcus, and Aspergillus remained constant after more than 3 days, while against Dermatophytes remained constant over 10 days of incubation. Decreasing the inoculum size increased the susceptibility to allicin. They also noted that antifungal activity of allicin was stronger on SG (Sabouraud glucose) agar medium with a pH of 5.6 than on the same medium with a pH of 6.0 or higher. These authors also reported that allicin induced morphological abnormalities in hyphae of Trichophyton mentagrophytes Morita, and the percent germination of spores of the Morita strain greatly decreased.

Another investigation confirmed the antifungal activity of thiosulfonates. Nagawa et al. (1996) reported that ajoene also inhibited yeast growth at concentrations below 20 mg/ml, and that Saccharomyces cerevisiae was killed by 30 mg/ml of ajoene after 24 h of cultivation. On the other hand, the antifungal activity and the minimal fungicidal concentration (MFC) of different Allium plants, namely garlic (Allium sativum L.), baker garlic (Allium bakeri L.), Chinese leek (Allium odoratum L.), Chinese chive (Allium tuberosum Rottler), scallion (Allium fistulosum Auct.), onion bulb (Allium cepa L.) and shallot bulb (Allium ascalonicum L.), against Aspergillus niger, A. flavus and A. fumigatus were investigated and results have shown that all these Allium possessed antifungal activity, with garlic showing the lowest MFC.

![Figure 5](198)
(Yin and Tsa0 1999). Benkeblia (2004) investigated the ef- fect of fve diferent concentrations of essential oil extracts of three types of onion and garlic against three fungi, Asper- gillus niger, Penicillium cyclopium and Fusarium oxyspor- rum. Although F. oxysporum was less inhibited, A. niger and P. cyclopium were signifcantly inhibited (Fig. 5). Alternatively, Shams-Ghalforokhi et al. (2006) also studied the antifungal activity of aqueous onion and garlic extracts against Malassezia furfur, Candida albicans, and other Candida spp. These authors noted that all onion and garlic inhibited growth of all fungi tested and the inhibition was dose-dependent. The most observed inhibitory dose of onion was 2 mg/ml, while for garlic this dose ranged from 65 to 125 mg/μl. In contrast, Lopez-Diaz et al. (2002) re- ported that garlic extract tested had no or a very little effect on the growth of Penicillium olsoni and Penicillium nul- givoeus. However, the case in point was the fnding that pure alliin (S-propenyl- L-cysteine sulfoxide) has no anti-oxidant activity in a medium. On the other hand, relative to some endogenous components, such as phenolics, may have antioxidant properties (Yin and Cheng 1998; Benkeblia 2005). Nevertheless, pure thiosulfates and related organosulfur compounds have exhibited real antioxidant properties in vitro (Augerrezabal et al. 2000) compared the antioxidant ef- fect of garlic with a mixture of nitrate, nitrite and ascorbic acid in dry sausage, and they noted that garlic was as effec- tive as the mixture of additives in inhibiting lipid oxidation. The antioxidant protection of diallyl sulifde (DAS), diallyl disulfide (DADS), S-ethyl cysteine (SEC), N-acetyl cysteine (NAC) in ground beef against lipid oxidation was studied by Yin and Cheng (2003). These authors found that the exogenous addition of these garlic-derived organosulfur compounds signifcantly delayed both oxymyoglobin and lipid oxidations.

Moreover, the antioxidant effects of diferent forms of garlic were investigated against lipid oxidation in raw chicken sausage during storage, and the antioxidant activity was also compared to BHA (butylated hydroxyanisole) (Sallam et al. 1999). The authors found that the addition of either garlic or BHA delayed lipon oxidation, and fresh garlic showed the highest antioxidant activity followed by garlic powder, BHA and garlic oil.

CONCLUDING REMARKS

The last decade has seen an enormous trend towards plant extracts as essential oils, volatiles, and other molecules released by the secondary metabolism of plants. However, investigation on the biological activities of Allium compounds, as well as other phyto-compounds, and their mechanisms of action is still a major challenge for biochemistry, microbiology and food industries.

The in vivo and in vitro data reported by the extensive literature showed that thiosulfates have diferent degrees of antibacterial and antifungal inhibition, therefore, the fndings to date are very important in order to try and compare the sensitivity of species and the diferent medium where these activities are assessed. Presently, it is difcult to explain the small discrepancy concerning the effects and sta- bility of thiosulfates, but it may have occurred because they are chemically complex or because their adsorption on living organisms is more stable than free thiosulfates in a medium. On the other hand, relative to some common anti-oxidants, thiosulfates are found to be effective antioxi- dants in terms of scavenging, and this activity is only for pure allicin. Although thiosulfates have shown other sca- venging ability, this activity was very weak comparatively, and many claims suggest that the antioxidant properties in crude extracts of Allium are more likely due to components other than thiosulfates and related organosulfur compounds, and these compounds remain to be identifed. For current studies on the mechanism of these diferent actions are now in progress and research is progressing faster than initially expected.

REFERENCES

Virtanen AI (1965) Studies on organic sulphur compounds and other labile substance in plants. Phytochemistry 4, 207-228

Wertheim T (1844) Protozoology, Tindall & Cassel, Baillière, London, UK, 251 pp

